Cosmographical Implications
Abstract
The COBE() DMR observation of large scale anisotropy of the CMBR allows one to compare the gravitational potential measured using Delta T to the gravitational forces required to produce the observed clustering of galaxies. This comparison helps to define the allowed range of cosmological models. As shown by Wright etal 1992, the COBE Delta T agrees quite well with the bulk flow velocity measured by Bertschinger etal 1990 in a window of radius 6000 km/sec. This is the best evidence that the initial perturbation spectrum in fact followed the Harrison-Zeldovich (and inflationary) prediction that P(k) ~ k(n) with n = 1. Assuming that n ~ 1, one can deduce information about the nature of the matter in the Universe: the first conclusion is that a large amount of non-baryonic dark matter is required. The second conclusion is that a linearly evolving model dominated by Cold Dark Matter produces too little structure on 2500 km/sec scales. However, mixed Cold Plus Hot Dark Matter models, vacuum dominated models, or the Couchman & Carlberg (1992) non-linear recipe for making galaxies out of CDM all seem to reproduce the observed structures on scales from 500-6,000 km/sec while connecting to the COBE results with the expected n ~ 1 slope. () COBE is supported by NASA's Astrophysics Division. Goddard Space Flight Center (GSFC), under the scientific guidance of the COBE Science Working Group, is responsible for the development and operation of COBE.
- Publication:
-
American Astronomical Society Meeting Abstracts
- Pub Date:
- December 1992
- Bibcode:
- 1992AAS...18110403W